FEATURE EXTRACTION FROM ASTHMA PATIENT’S VOICE USING MEL-FREQUENCY CEPSTRAL COEFFICIENTS
نویسندگان
چکیده
منابع مشابه
Feature extraction using Mel frequency cepstral coefficients for hyperspectral image classification
The Mel frequency cepstral coefficient (MFCC) model, which is widely used in speech detection and recognition, is introduced to extract features from hyperspectral image data. The similarities and differences between speech signals and spectral image data are compared and analyzed. The standard MFCC model is then improved to suit the characteristics of spectral image data by reintroducing the d...
متن کاملAnalysis on Mel Frequency Cepstral Coefficients and Linear Predictive Cepstral Coefficients as Feature Extraction on Automatic Accents Identification
Automatic Accents Identification is very important for discussion especially within scope of speaker recognition. Some contribution of appropriate techniques uses in Music Recognition and Accent Identification may contributes in improving the recognition rate. Techniques in discussing on music genre identification or accents automatic identification and the combination of both processes still i...
متن کاملSpeech reconstruction from mel frequency cepstral coefficients and pitch frequency
This paper presents a novel low complexity, frequency domain algorithm for reconstruction of speech from the melfrequency cepstral coe cients (MFCC), commonly used by speech recognition systems, and the pitch frequency values. The reconstruction technique is based on the sinusoidal speech representation. A set of sine-wave frequencies is derived using the pitch frequency and voicing decisions, ...
متن کاملA Wavelet Packet and Mel-Frequency Cepstral Coefficients-Based Feature Extraction Method for Speaker Identification
One of the most widely used approaches for feature extraction in speaker recognition is the filter bank-based Mel Frequency Cepstral Coefficients (MFCC) approach. The main goal of feature extraction in this context is to extract features from raw speech that captures the unique characteristics of a particular individual. During the feature extraction process, the discrete Fourier transform (DFT...
متن کاملMel Frequency Cepstral Coefficients for Music Modeling
We examine in some detail Mel Frequency Cepstral Coefficients (MFCCs) the dominant features used for speech recognition and investigate their applicability to modeling music. In particular, we examine two of the main assumptions of the process of forming MFCCs: the use of the Mel frequency scale to model the spectra; and the use of the Discrete Cosine Transform (DCT) to decorrelate the Mel-spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Research in Engineering and Technology
سال: 2014
ISSN: 2321-7308,2319-1163
DOI: 10.15623/ijret.2014.0306050